Surface and Groundwater Assessment of the Mucool Beam Absorber (Kamran Vaziri, Paul Kesich, Igor Rakhno, Carol Johnstone) ### Introduction Mucool is part of a research project for studying single pass muon beam transverse cooling using a liquid hydrogen target¹. For this phase of the project a proton beam will be used instead of a muon beam. The Mucool facility is being built as an extension of the 400 MeV LINAC. The proton beam after passing through liquid hydrogen will end up on a beam absorber. The facility will operate at varying repetition and intensity rates with the total number of protons per year being limited to 10^{21} . The following calculations used both this quantity and higher and lower ones for comparisons. It was concluded that neither the instantaneous rate nor the 10^{21} p/year violates ground and surface water restrictions This note describes the calculations to investigate the concentrations of radioisotopes ²²Na and tritium that may reach the surface waters and the aquifer. Details of the methodology used are given in the references and will not be repeated here. ## Methodology Figure 1 shows a longitudinal cross section of the proposed beam absorber. Figure 2 shows the results of the MARS Monte Carlo^{2, 3} modeling of the proton beam interactions with the absorber and the resulting radiation levels outside the absorber. Radiation leaking outside the absorber will produce several radioisotopes in the soil. ²²Na and tritium are the most important ones, where water contamination is considered. The Concentration Model ^{4,5,6} was used to predict the concentrations of the ²²Na and tritium in the water right outside the enclosure and then a groundwater contaminant transport method⁷⁻⁹ was used to estimate the attenuation of the radionuclide concentrations during transport to the aquifer. #### Results Figure 3 shows the results of the geological characterization in the Mucool area. The aquifer is 12.75m below the absorber. The absorber is in the fill region, above the 728 ft elevation. The centerline of the absorber has been determined to be 7431-1" in elevation. The base of the absorber is shown geologically in a later figure. Figures 4a and 4b show that the maximum tritium produced from five years of continuous operations will take about 120 years to get to 6.5m-7m depths. Figure 4c shows the results of a 10-year operation period. Calculations showed, because of radioactive decay, that even after 500 years tritium activity does not move deeper than 10m. For the same reason, the ²²Na will never get further than 2.5m. Based on these calculations the radionuclides will be attenuated by at least a factor of 10⁸. Table 1 shows the results of this calculation for different proton intensities per year. For 10^{21} protons/year the surface water limit will be exceeded. To avoid the surface water issue, it is planned to bury this absorber in the soil with no granular fill under-drain. The porous section of under-drain for the nearby building in this region will also be replaced with solid pipe and backfilled with clay or lean concrete¹⁰. # Conclusion Provisions to bury the absorber in the soil and making sure there is no discharge of water from around the beam absorber to the surface waters will mitigate the surface water issue. Given the low seepage velocity and the large attenuation of the contaminants through the soil, the ground water limit will not be approached for the projected proton intensities. # Reference - 1 "<u>A Feasibility study of a neutrino source based on a muon storage ring."</u>By N. Holtkamp (ed.), et al., SLAC-REPRINT-2000-054 (Jun 2000) 158p. - 2- Igor Rakhno, private communication for MARS calculation.(March, 2003) - 3- N.V. Mokhov, "The MARS Code System User's Guide", Fermilab-FN-628 (1995); N.V. Mokhov, O.E. Krivosheev, "MARS Code Status", Proc. Monte Carlo 2000 Conf., p. 943, Lisbon, October 23-26, 2000; Fermilab-Conf-00/181 (2000); - 4- Cossairt, J. D., A. J. Elwyn, P. Kesich, A. Malensek, N. Mokhov, and A. Wehmann "The Concentration Model Revisited", E.P. Note #17. June 1999. - 5- Cossairt, J. Donald "Use of a Concentration-Based Model for Calculating the Radioactivation of Soil and Groundwater at Fermilab" E.P. Note #8. December 1994. - 6- Cossairt, J. D." Radiation Physics for Personnel and Environmental Protection", FERMILAB-TM-1834, February 2003. - 7- Malensek A. J., A. A. Wehmann, A. J. Elwyn, K. J. Moss, and P. M. Kesich, "Groundwater Migration of Radionuclides at Fermilab", Fermilab Report TM-1851, August 1993. - 8- E. A. Sudicky, T. D. Wadsworth, J. B. Kool, and P. S. Huyakorn, PATCH3D-Three-Dimensional Analytic Solution for Transport in a Finite Thickness Aquifer with First-Type Rectangular Patch Source. Prepared for Woodward Clyde Consultants, HydroGeologic Inc. Herndon, Va., January 1988. - 9- Woodward-Clyde Consultants, Summary of Radionuclide Transport Modeling for Ground Water at the Fermi National Accelerator Laboratory, Batavia, Il. Project 92C3073, Chicago, IL., August 1993. - 10-MuCOOL ENCLOSURE, Drawing No. 4-1-135 SC-5, SK-SC5-031203. Figure 1. A longitudinal cross section of the beam absorber. The central angled piece is the copper core, surrounded by iron, concrete shell and soil. The cavity in the absorber is designed to trap neutrons, to reduce backscatter, and to reduce dose rates in the experimental area. Figure 2. MARS calculations showing the star density distribution in and around the beam absorber. Figure 3. Geological characteristics of the ground in the beam absorber area. Figure 4. Results of the contaminant transport calculations. (a) and (b) show the transport of the peak contaminant concentration of tritium from 5 years of operation at 6.5m and 7m depths. Figure (c) shows the number of years required for the peak activity of a 10 year operation to get to different depths. | | R(Till)= 1.00E-08 | | |-----------------------|--------------------------|-----------------------| | S-ave= 2.7E-11 | stars/cc/p | T-irr (yr) = 1 | | | T-cool (yr) = 0 | | | | Tritium | | Sodium | | |--------------|----------------------|-----------------------|-------------------------|-----------------------| | Protons/year | C-initial (pCi/cc-y) | C-final
(pCi/cc-y) | C-initial
(pCi/cc-y) | C-final
(pCi/cc-y) | | 1.00E+19 | 1 | 1.38E-08 | 0 | 1.23E-09 | | 1.00E+20 | 14 | 1.38E-07 | 1 | 1.23E-08 | | 1.00E+21 | 138 | 1.38E-06 | 12 | 1.23E-07 | | 1.00E+22 | 1382 | 1.38E-05 | 123 | 1.23E-06 | | 1.00E+23 | 13817 | 1.38E-04 | 1228 | 1.23E-05 | | 1.00E+24 | 138173 | 1.38E-03 | 12277 | 1.23E-04 | | % of Total Limit | | | | | |------------------|---------|--|--|--| | Surface | Aquifer | | | | | 1.3% | 0.00% | | | | | 13.0% | 0.00% | | | | | 129.677% | 0.00% | | | | | 1296.8% | 0.00% | | | | | 12967.7% | 0.00% | | | | | 129677.2% | 0.04% | | | | Table 1. Concentration model calculations for different proton intensities. The gray C01 columns give the concentration of each radionuclide right outside the concrete, and C(t)f1 Columns give the expected concentration in the aquifer. The right two columns combine concentrations as a percentage of the allowed regulatory limits.